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RESEARCH MEMORANDUM

PRELTMINARY INVESTIGATION OF CONTROL CHARACTERISTICS
AT TRANSONIC SPEEDS OF A TAPERED L45° SWEPTBACK
WING OF ASPECT RATIO 3 HAVING A HORN-
BATANCED FULL-SPAN CONTROL

By John G. Lowry and Joseph E. Fikes
SUMMARY

An investigetion was made at transonic speeds in the Langley high-
speed T- by 10-foot tunnel to determine hinge-moment and effectiveness
characteristics of a horn-balanced control on an aspect-ratio-3, L5°
sweptback wing. The investigation was extended through the transonic
speed range by testing in the high velocity field over a reflection
Plane on the sidewall of the tunnel.

The results of the investigatlon indicated that the horn balance
was effective at subsonic speeds in reducing the hinge moments of the
control but was relatively ineffective at transonic speeds.

INTRODUCTION

The problem of balancing control surfaces has always been one of
the more @ifficult problems associsted with providing adeguate control
for an aircraft. There are several summary reports (references 1 to L)
that cover the problem in the subsonic speed range but only a few data
are available at transonic and supersonic speeds. The National Advisory
Committee for Aeronautics is at the present time investigsting the
various types of serodynamic balences in the transonic speed range. In
this investigation no attempt is being mede to obtain design dsta, that
is, to determine the amount of balance required to completely balance
the surface. The emphssis is being placed, however, on finding which
of the conventional balances appears promising at transonic speeds.
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The present paper presents one such investigation - a limited
study of an unshielded horn balance on an aspect-ratio-3, L45° swept wing.
One horn shgpe was investigated through a limited angle of attack and
control deflection range at speeds from Mach number 0.7 to 1.1.

COEFFICIENTS AND SYMBOLS

Cy, 11ft coefficient <T”’i°e Bemé“"Pan 1ift)
a
C1 gross rolling-moment coefficient at plane of symmetry
(ﬁolling moment of semispan model)
qSb
Cn flap hinge-moment coefficient
Flap hinge moment gbout hinge line of semispan flaé)
g2M!
S twice wing area of basic semispan model, 0.202 square foot
b twice semispan of basic model, 0.778 foot

mean aerodynamic chord of basic wing, 0.269 foot
b /2
2/ 2
-— cdy

M area moment of semispan flap (without horn) rearward of hinge
line about hinge line, 0.000692 foot cubed

o}

q effective dynamic pressure over span of model, pounds per
square foot <%pV2)

c local wing chord, feet

y spanwise distance from plane of symmetry

o] mass density of air, slugs per cublc foot

v free-stream velocity, feet per second
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M effective Mach number over spsn of model

s> b2

3 cMg dy

o}

My avergge chordwise local Mach number
M; local Mach number
R Reynolds number of wing based on ©
a angle of attack, degrees .
5 flap deflection relative to wing-chord plane, messured in a

plane perpendicular to flasp hinge axis (positive when trailing
edge 1s down), degrees

Parameters:
)

oCy
18 =\ 3.
Q

The subscripts outside the parentheses indicate the factors held
constant during the measurement of the parsmeters in the vicinity
of & =0° and o = 0°, respectively. All the force and moment coeffi-
cients are based on the area and spanr of the basic wing without the horn
balance. This allows for easier evalustion with other types of balances
(references 5 to 7) that were investigated on the same wing.
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MODEL AND APPARATUS

The semispan model used during this investigetion was tested on the
sidewall reflection plane setup of the Langley high-speed T- by 10-foot
tunnel and had a quarter-chord sweep angle of 45,58°, aspect ratio 3,
taper ratio 0.5, and an NACA 64A010 airfoil section measured in a plane
at 45° to the plane of symmetry. Pertinent dimensions of the model and
the reflectlon-plane plate are given in figure 1 and a photograph of a
typical wing mounted on the reflection plsne is shown in figure 2. The
wing was equipped with & full-span, plain flap-type control of 25.L per-
cent of the chord measured parallel to the plane of symmetry. The flap
was equipped with & triangular-sheped horn balsnce having sn area equal
to 13 percent of the flap area (fig. 3).

The steel model was mounted on an electrical strain-gage balance
which was attached to the tunnel wall and shielded from the air stream.
A strain-gage beam was attached to the flap hinge pin that indicated
the flap hinge moments. The model butt extended through a turntable in
the reflection-plane plate with the clearance gap, about 1/16 inch,
sealed by a sponge-rubber wiper seal glued to the lower surface of the
turnteble (references 7 and 8).

TESTS

The tests were made on the sidewall reflection-plane test setup of
the Langley high-speed T7- by 10-foot tunnel. The reflection-plane test
setup was devised as a method of testing small semispan models through
the transonic speed range and utilized the high-velocity flow field over
& plate mounted gbout 3 inches from the tunnel wall. The technique 1s
further described in reference 8.

Typical contours of local Mach number distribution in the vicinity
of the model location are shown in figure 4. The contours indicate a
Mach number variation over the model of as much as 0.05 at high Msch
numbers. No attempt has been made to evaluate the effects of this Mach
number variation on the force measurements of this model configuration.
The effective test Mach number was obtained from similar contour charts
using the relationship ’

o b/2
M=z ‘/h cMg, Ay
o
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Lift, rolling-moment, and control hinge-moment data were obtained
through a Mech number range of 0.70 to 1.10 and an angle-of-attack range
of 0° to 12°. Flap deflections of OO, 15, and -10° were covered in the
test. A typicel varliastion of Reynolds number with Mach number is pre-
sented in figure 5.

CORRECTIONS

The alleron-effectiveness parameters Cza presented herein repre-

sent the aerodynamic effects on a complete wing produced by the deflec-
tion of the control surface on only one semispan of the complete wing.

A reflection-plane correction, which accounts for the carry-over of load
to the other wing, has been applied to the parsmeter 015 throughout

the Mach number renge tested. The corrected value of Cj3gy was obtained
by multiplying the measured value of Cig Dby the correction factor

of 0.672 which was obtained from an unpublished experimental investigation
at low speed (M = 0.25) and theoretical considerations. Although the
corrections are, based on incompressible conditions, it 1s believed that
thé results obtained by applying the correction factor give a better
representation of the true conditions than the uncorrected results.

The design of the wing necessitated the use of a long hinge pin
extension to accommodate the hinge-moment strain-gage beam. Measursble
deflections in torsion were evident when control hinge moments were
applied. These deflections were found to be a direct function of the
hinge moment gpplied and control deflections have been corrected
accordingly.

RESULTS AND DISCUSSION

Variation of the aerodynamic characteristics with control deflec-
tion are shown in figure 6. The effectiveness and hinge-moment parame-
ters obtained from figure 6 are shown in figures 7 and 8. The data for
the plain control were obtained from reference 6.

The hinge-moment psrameters Cp, and Ch6 (fig. T) indicate
that the horn balance provides a positive increment in Cha throughout
the speed range investigated, but balances Ch6 only for M< 1.0.

The ratio of the increments in the Cha and Ch5 in the subsonic

range are very similar to those found on unswept wings with unshielded
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horn balences at low speed (reference 3). The ineffectiveness of the horn
in reducing Ch5 gbove M = 1.0 is in agreement with the results of an

investigation of a shielded horn on a 35° sweptback wing (reference 9).

The effectiveness parameters CL8 and Cla (fig. 8) show the same

variation with Mach number as the plain control, that is, a decrease in
effectiveness near a Mach number of 1.00, but the addition of the horn
increases the effectiveness throughout the speed range, probably because
of the increase of control area.

CONCIUDING REMARKS

An investigation at transonic speeds of s horn-balanced contrecl on
an aspect-ratio-3, 45° sweptback wing indicsted that the horn balance
reduced the hinge moments of the control due to deflection at subsonic
speeds, but not in the transonlc speed range. The horn balance provided
a positive increment in the variastion of the hinge-moment coefficient
with angle of attack throughout the speed range, and actually resulted
in positive values of this parameter at subsonic speeds.’

Langley Aeronautical Lsboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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Figure 1.- Basic wing model mounted on the reflection plane in the
T- by 10-foot high-speed tunnel.
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Figure 2.~ View of typical model mounted on the reflection plane in
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Figure T7.- Varlation of hinge-moment parameters with Mach number.
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